172 research outputs found

    Elastic properties of 2D auxetic honeycomb structures- a review

    Get PDF
    The research field of auxetics, materials or structures exhibiting a negative Poisson's ratio, has received attention because of the unusually advantageous material properties that can be achieved with it, such as high indentation resistance and high shear resistance. In the past decades, the theoretical understanding of different factors that can lead to an auxetic behaviour has advanced greatly, resulting in a rapid increase in the number and type of the structures designed to exhibit this behaviour. These now exploit a number of different mechanisms, providing a large selection of properties which can be tailored for the specific needs. This review aims to describes the auxetic structures that have currently been identified and designed, describing the different approaches utilised to define their mechanical behaviour and analysing their structural properties, limitations, and potential field of application. In particular, the focus lies on the major works within the field, discussing their limitations and addressing works done to complement them

    Aortic Arch Phenotypes in Double Outlet Right Ventricle (DORV)—Implications for Surgery and Multi-Modal Imaging

    Get PDF
    Abnormal aortic arches (AAAs) cover a spectrum of malformations, including abnormal laterality, branching patterns, and flow-limiting narrowing, which themselves vary from tubular hypoplasia, through discrete coarctation, to complete interruption of the arch. Neonatal surgery within the first days of life is necessary for most of these morphologies. Patch aortoplasty is widely used as it can offer a good haemodynamic result, being tailored to each combination of presenting pathologies. Our study hypothesis was that arch malformations are frequent in DORV and exhibit a plethora of phenotypes. We reviewed 54 post-mortem heart specimens from the UCL Cardiac Archive, analysing morphological features that would potentially influence the surgical repair, and taking relevant measurements of surgical importance. AAAs were found in half of the specimens, including 22.2% with aortic arch narrowing. In total, 70% and 30% of narrow arches had a subpulmonary and subaortic interventricular defect, respectively. Z-scores were significantly negative for all cases with tubular hypoplasia. We concluded that arch malformations are a common finding among hearts with DORV. Surgery on the neonatal aortic arch in DORV, performed in conjunction with other interventions that aim to balance pulmonary to systemic flow (Qp/Qs), should be anticipated and form an important part of multi-modal imaging

    Patient-Specific Modelling and Parameter Optimisation to Simulate Dilated Cardiomyopathy in Children

    Get PDF
    PURPOSE: Lumped parameter modelling has been widely used to simulate cardiac function and physiological scenarios in cardiovascular research. Whereas several patient-specific lumped parameter models have been reported for adults, there is a limited number of studies aiming to simulate cardiac function in children. The aim of this study is to simulate patient-specific cardiovascular dynamics in children diagnosed with dilated cardiomyopathy, using a lumped parameter model. METHODS: Patient data including age, gender, heart rate, left and right ventricular end-systolic and end-diastolic volumes, cardiac output, systolic and diastolic aortic pressures were collected from 3 patients at Great Ormond Street Hospital for Children, London, UK. Ventricular geometrical data were additionally retrieved from cardiovascular magnetic resonance images. 23 parameters in the lumped parameter model were optimised to simulate systolic and diastolic pressures, end-systolic and end-diastolic volumes, cardiac output and left and right ventricular diameters in the patients using a direct search optimisation method. RESULTS: Difference between the haemodynamic parameters in the optimised cardiovascular system models and clinical data was less than 10%. CONCLUSION: The simulation results show the potential of patient-specific lumped parameter modelling to simulate clinical cases. Modelling patient specific cardiac function and blood flow in the paediatric patients would allow us to evaluate a variety of physiological scenarios and treatment options

    3D Printing Cardiovascular Anatomy: A Single-Centre Experience

    Get PDF
    This chapter presents the experience of the cardiac engineering team within the Centre for Cardiovascular Imaging at Great Ormond Street Hospital for Children (London, UK) in using three-dimensional (3D) printing technology. 3D models can serve different functions towards implementing a patient-specific approach for studying and potentially treating congenital heart disease (CHD). In order to showcase different potential applications, this chapter discusses not only clinical case studies and engineering experiments but also the potential for translation through patients and public involvement and engagement (PPI/E)

    Finite Element Analysis to Study Percutaneous Heart Valves

    Get PDF
    Communications engineering / telecommunication

    Reconstruction of fetal and infant anatomy using rapid prototyping of post-mortem MR images

    Get PDF
    OBJECTIVES: The recent decline in autopsy rates and lack of human anatomical material donated for research and training has resulted in issues for medical training in the United Kingdom. This study aims to examine the feasibility of making accurate three-dimensional (3D) models of the human body and visceral organs using post-mortem magnetic resonance (MR) imaging and rapid prototyping. METHODS: We performed post-mortem MR imaging using a 3D T2-weighted sequence in 11 fetuses and infants, before autopsy, using either a 1.5-T or 9.4-T MR scanner. Internal organs were reconstructed in silico and 3D models were created by rapid prototyping. RESULTS: The median gestation of fetuses was 20 (range 19-30) weeks and the median age of infants was 12 (range 8-16) weeks. Models created by rapid prototyping accurately depicted structural abnormalities and allowed clear visualisation of 3D relationships. CONCLUSIONS: Accurate 3D modelling of anatomical features from post-mortem imaging in fetuses and infants is feasible. These models could have a large number of medical applications, including improved parental counselling, invaluable teaching resources and significant medico-legal applications to demonstrate disease or injury, without the need to show actual autopsy photographs

    Computational investigation of the haemodynamics shows criticalities of central venous lines used for chronic haemodialysis in children

    Get PDF
    Background: Haemodialysis is a life-saving treatment for children with kidney failure. The majority of children have haemodialysis through central venous lines (CVLs). The use of CVLs in pediatric patients is often associated to complications which can lead to their replacement. The aim of this study is to investigate haemodynamics of pediatric CVLs to highlight the criticalities of different line designs. Methods: Four models of CVLs for pediatric use were included in this study. The selected devices varied in terms of design and sizes (from 6.5 Fr to 14 Fr). Accurate 3D models of CVLs were reconstructed from high-resolution images including venous and arterial lumens, tips and side holes. Computational fluid dynamics (CFD) analyses were carried out to simulate pediatric working conditions of CVLs in ideal and anatomically relevant conditions. Results: The arterial lumens of all tested CVLs showed the most critical conditions with the majority of blood flowing through the side-holes. A zone of low flow was identified at the lines' tip. The highest shear stresses distribution (>10 Pa) was found in the 8 Fr line while the highest platelet lysis index in the 10 Fr model. The analysis on the anatomical geometry showed an increase in wall shear stress measured in the 10 F model compared to the idealised configuration. Similarly, in anatomical models an increased disturbance and velocity of the flow was found inside the vein after line placement. Conclusion: This study provided a numerical characterization of fluid dynamics in pediatric CVLs highlighting performance criticalities (i.e. high shear stresses and areas of stagnation) associated to specific sizes (8 Fr and 10 Fr) and conditions (i.e. anatomical test)
    corecore